

Welcome to pyutils_sh’s documentation!

Assortment of Python utilities for my personal projects

Requirements

	All code tested with Python 3.6 on Windows.

	Minor adjustments may need to be made for Python 2.7 or other
operating systems, but should mostly be OK.

	Quickest way to get a working Python installation with all the useful
dependencies is to install
Anaconda [https://www.continuum.io/downloads]

Documentation

You can find the documentation for this package
here [http://pyutils-sh.readthedocs.io]

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyutils_sh	

 	
 	
 pyutils_sh.battery	

 	
 	
 pyutils_sh.exam	

 	
 	
 pyutils_sh.gaze	

 	
 	
 pyutils_sh.image	

 	
 	
 pyutils_sh.stats	

 	
 	
 pyutils_sh.survey	

 	
 	
 pyutils_sh.utils	

Index

 A
 | B
 | C
 | F
 | G
 | I
 | P
 | R

A

 	
 	aggregate_ant() (in module pyutils_sh.battery)

 	aggregate_digit_span() (in module pyutils_sh.battery)

 	aggregate_flanker() (in module pyutils_sh.battery)

 	aggregate_mrt() (in module pyutils_sh.battery)

 	
 	aggregate_ravens() (in module pyutils_sh.battery)

 	aggregate_sart() (in module pyutils_sh.battery)

 	aggregate_sternberg() (in module pyutils_sh.battery)

 	aggregate_wide() (in module pyutils_sh.battery)

B

 	
 	boxcount() (in module pyutils_sh.image)

C

 	
 	cohens_d() (in module pyutils_sh.stats)

 	
 	cross_correlation() (in module pyutils_sh.gaze)

F

 	
 	fractal_dimension() (in module pyutils_sh.image)

G

 	
 	get_path() (in module pyutils_sh.utils)

 	
 	grade_scantron() (in module pyutils_sh.exam)

I

 	
 	ipaq_long_aggregate() (in module pyutils_sh.survey)

 	
 	ipaq_to_minutes() (in module pyutils_sh.survey)

P

 	
 	pas_aggregate() (in module pyutils_sh.survey)

 	pyutils_sh (module)

 	pyutils_sh.battery (module)

 	pyutils_sh.exam (module)

 	
 	pyutils_sh.gaze (module)

 	pyutils_sh.image (module)

 	pyutils_sh.stats (module)

 	pyutils_sh.survey (module)

 	pyutils_sh.utils (module)

R

 	
 	rgb2gray() (in module pyutils_sh.image)

pyutils_sh

	pyutils_sh package
	Module contents
	pyutils_sh
	Documentation

	Modules

	Submodules

	pyutils_sh.battery module

	pyutils_sh.exam module

	pyutils_sh.gaze module

	pyutils_sh.image module

	pyutils_sh.stats module

	pyutils_sh.survey module

	pyutils_sh.utils module

	setup module

pyutils_sh package

Module contents

pyutils_sh

An assortment of Python utilities for my personal projects. For example,
there are functions for aggregating different types of survey data,
grading scantron exams, calculating various statistics, and other general
Python helper functions.

Documentation

Documentation is available via docstrings provided with the code, and an
online API reference found at
ReadTheDocs [http://pyutils-sh.readthedocs.io].

To view documentation for a function or module, first make sure the package
has been imported:

>>> import pyutils_sh

Then, use the built-in help function to view the docstring for any
function or module:

>>> help(pyutils_sh.exam.grade_scantron)

Modules

	battery

	Functions for aggregating subject data from
Cognitive Battery (https://github.com/sho-87/cognitive-battery)

	exam

	Functions for aggregating different types of data from school exams (e.g. student grades)

	gaze

	Functions for analyzing gaze/eye-tracking data

	image

	Functions for analyzing images

	stats

	Tools for calculating different types of statistics

	survey

	Tools for aggregating and analyzing data from different surveys

	utils

	General utility functions used for Python programming

Submodules

pyutils_sh.battery module

Functions for aggregating subject data from
Cognitive Battery (https://github.com/sho-87/cognitive-battery)

	
aggregate_ant(data, sub_num, response_type='full')

	Aggregate data from the ANT task.

Calculates various summary statistics for the ANT task for a given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	response_type ({‘full’, ‘correct’, ‘incorrect’}, optional) – Should the summary data be calculated using all trials? Only correct
trials? Or only incorrect trials? This is not supported in all tasks.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_digit_span(data, sub_num)

	Aggregate data from the digit span task.

Calculates various summary statistics for the digit span task for a
given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_flanker(data, sub_num, response_type='full')

	Aggregate data from the Flanker task.

Calculates various summary statistics for the Flanker task for a
given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	response_type ({‘full’, ‘correct’, ‘incorrect’}, optional) – Should the summary data be calculated using all trials? Only correct
trials? Or only incorrect trials? This is not supported in all tasks.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_mrt(data, sub_num)

	Aggregate data from the MRT task.

Calculates various summary statistics for the MRT task for a given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_ravens(data, sub_num)

	Aggregate data from the Raven’s Matrices task.

Calculates various summary statistics for the Raven’s Matrices task for a
given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_sart(data, sub_num)

	Aggregate data from the SART task.

Calculates various summary statistics for the SART task for a given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_sternberg(data, sub_num, response_type='full')

	Aggregate data from the Sternberg task.

Calculates various summary statistics for the Sternberg task for a
given subject.

	Parameters

	
	data (dataframe) – Pandas dataframe containing a single subjects trial data for the task.

	sub_num (str) – Subject number to which the data file belongs.

	response_type ({‘full’, ‘correct’, ‘incorrect’}, optional) – Should the summary data be calculated using all trials? Only correct
trials? Or only incorrect trials? This is not supported in all tasks.

	Returns

	stats – List containing the calculated data for the subject.

	Return type

	list

	
aggregate_wide(dir_battery, dir_output, response_type='full', use_file=False, save=True)

	Aggregate data from all battery tasks.

Takes a directory containing individual subject data files created from
the Cognitive Battery, and calculates summary statistics for all
subjects across all tasks. A single output summary file is created
containing the aggregated battery data.

	Parameters

	
	dir_battery (str) – Path to the directory containing subject data files created by the
Cognitive Battery.

	dir_output (str) – Path to the directory where the output summary file will be saved. A
filed named ‘battery_data.csv’ will be created in this directory.

	response_type ({‘full’, ‘correct’, ‘incorrect’}, optional) – Should the summary data be calculated using all trials? Only correct
trials? Or only incorrect trials? This is not supported in all tasks.

	use_file (bool, optional) – If True, aggregated battery data will be imported from the existing
summary file instead of being re-aggregated.

	save (bool, optional) – Set to True to save an output summary file to the output directory.
If False, then no file will be saved, but a dataframe will still be
returned from this function.

	Returns

	all_data – Pandas dataframe containing the aggregated summary data for all tasks.

	Return type

	dataframe

pyutils_sh.exam module

Functions for aggregating and analyzing exam-related data, such as calculating
student exam performance.

	
grade_scantron(input_scantron, correct_answers, drops=[], item_value=1, incorrect_threshold=0.5)

	Calculate student grades from scantron data.

Compiles data collected from a scantron machine (5-option multiple choice
exam) and calculates grades for each student. Also provides descriptive
statistics of exam performance, as well as a list of the questions “most”
students got incorrect, and saves the distribution of answers for those
poorly performing questions.

This function receives 1 scantron text file and produces 2 output files.
Splitting of the scantron data is specific to each scantron machine. The
indices used in this function are correct for the scantron machine in the
UBC Psychology department as of 2015. Indices need to be adjusted for
different machines.

Scantron exams can be finicky. Students who incorrectly fill out scantrons
need to be considered. Make sure to manually inspect the text file output
by the scantron machine for missing answers before running this. This
function does not correct for human error when filling out the scantron.

	Parameters

	
	input_scantron (string) – Path to the .txt file produced by the scantron machine.

	correct_answers (list) – A list of strings containing the correct exam answers. For example:
[“A”, “E”, “D”, “A”, B”]. The order must match the order of
presentation on the exam (i.e. the first list item must correspond
to the first exam question)

	drops (list, optional) – List of integers containing question numbers that should be excluded
from calculation of grades. For example: [1, 5] will not include
questions 1 and 5 when calculating exam scores.

	item_value (int, optional) – Integer representing how many points each exam question is worth.

	incorrect_threshold (float between [0., 1.], optional) – Poorly performing questions are those where few students got the
correct answer. This parameter sets the threshold at which an item is
considered poor. For example, a threshold of 0.4 means that a poor
item is considered to be one where less than 40% of students
chose the correct answer.

pyutils_sh.gaze module

Functions for calculating various gaze/eye-tracking related statistics.

	
cross_correlation(person1, person2, framerate=25, constrain_seconds=2)

	Calculate cross-correlation between two gaze signals.

This function takes 2 lists/arrays of data, each containing an individual’s
coded gaze data from an eye-tracker, and calculates the normalized max
cross-correlation value with its associated lag.

Additionally, it will also return the cross-correlation value at 0 lag, as
well as the entire normalized array as a Python list.

Negative lag value means person2 lagged behind person1 by x frames
e.g.
A = [0,1,1,1,0,0,0]
B = [0,0,0,1,1,1,0]
cross_correlation(A,B)

Positive lag value means person1 lagged behind person2 by x frames
e.g.
A = [0,0,0,1,1,1,0]
B = [0,1,1,1,0,0,0]
cross_correlation(A,B)

	Parameters

	
	person1 (ndarray or list) – 1D array of person 1’s gaze over time, coded as 0 = not looking,
1 = looking. The values represent whether the person was looking at a
target at a particular point in time.

	person2 (ndarray or list) – 1D array of person 2’s gaze over time, coded as 0 = not looking,
1 = looking. The values represent whether the person was looking at a
target at a particular point in time.

	framerate (int, optional) – The framerate (frames per second) of the eye-tracker.

	constrain_seconds (int, optional) – Number of seconds to constrain the cross-correlation values by. The
returned lags and cross-correlations will be centered around 0 lag by
this many seconds.

	Returns

	
	max_R (float) – Maximum (normalized) cross-correlation value.

	max_lag_adj (float) – Lag at which max cross-correlation occurs.

	zero_R (float) – Cross-correlation value at 0 lag.

	norm_array (list) – A list of all (normalized) cross-correlation values.

pyutils_sh.image module

Functions for analyzing images.

	
boxcount(img, k)

	Internal box counting function used by
pyutils_sh.image.fractal_dimension().

From https://github.com/rougier/numpy-100 (#87)

	Parameters

	
	img (ndarray) – Thresholded grayscale image for box counting.

	k (ndarray) – Array of box sizes to use.

	Returns

	count – Count value.

	Return type

	int

	
fractal_dimension(img, threshold=0.5, mean_threshold=True, plot=False)

	Calculate (Minkowski–Bouligand) fractal dimension.

From https://github.com/rougier/numpy-100 (#87)

	Parameters

	
	img (ndarray) – Grayscale image for box counting.

	threshold (float between [0., 1.], optional) – Value at which to binarized the image.

	mean_threshold (bool, optional) – If true, binarize image at the its mean value.

	plot (bool, optional) – Display a plot of the thresholded image.

	Returns

	fd – Fractal dimension value for the image.

	Return type

	float

	
rgb2gray(img)

	Convert RGB image to grayscale.

	Parameters

	img (ndarray) – Normalized (/255) image array from scipy.misc.imread() or
imageio.imread().

	Returns

	gray – Grayscale image array.

	Return type

	ndarray

pyutils_sh.stats module

Tools for calculating different types of statistics, such as effect size
estimates.

	
cohens_d(g1_m, g1_sd, g1_n, g2_m, g2_sd, g2_n)

	Calculate Cohen’s d for two independent samples.

This calculation involves taking the mean difference between groups, and
dividing it by the pooled standard deviation.

	Parameters

	
	g1_m (float) – Mean value for group 1.

	g1_sd (float) – Standard deviation for group 1.

	g1_n (int) – Sample size of group 1.

	g2_m (float) – Mean value for group 2.

	g2_sd (float) – Standard deviation for group 2.

	g2_n (int) – Sample size of group 2.

	Returns

	d – Standardized effect size (Cohen’s d) for the group difference.

	Return type

	float

pyutils_sh.survey module

Functions for aggregating and analyzing different types of survey data.

	
ipaq_long_aggregate(q_map, domains=False)

	Aggregate self-reported activity values into IPAQ summary data.

Calculates MET/minutes and IPAQ category for each individual based on
self-reported physical activity levels. The scoring follows the official
IPAQ scoring guide as closely as possible.

Section 7.4 (Truncation rules) of the scoring guide is extremely unclear
about how to truncate time data for the long form IPAQ. The rule doesn’t
allow for the separation of weekly time or weekly METs. This rule has not
been followed here.

Additionally, the American College of Sports Medicine (ACSM) provides
minimum recommended physical activity levels. In addition to the IPAQ
categorical variable, an ACSM activity variable is also calculated, which
indicates whether the individual met the minimum recommended levels.

	Parameters

	
	q_map (dict) – Dictionary mapping question names to separate Pandas columns/series.
This is used so internally the function uses a consistent name for
each column of the survey (which may be named differently).

The dictionary keys follow a strict naming scheme of qXX where XX
is question number. Time variables need to be split, and hours and
minutes must be stored under separate keys. The naming scheme
for the time variables are qXX_h and qXX_m. The dictionary must
also contain a column of subject numbers under the key sub_num. All
questions must be included in the dictionary (41 IPAQ questions,
plus 1 subject number).

An example dictionary might look like this:

>>> q_map = {'sub_num': data['subject_id'],
 'q1': data['IPAQ_1'],
 'q2': data['IPAQ_2'],
 'q3_h': data['IPAQ_3_1'],
 'q3_m': data['IPAQ_3_2'],
 ...
 'q27_h': data['IPAQ_27_1'],
 'q27_m': data['IPAQ_27_2']}

	domains (bool, optional) – If True, MET minutes and time values will be included separately for
each IPAQ activity domain.

	Returns

	aggregated – Pandas dataframe containing the calculated IPAQ summary data.

	Return type

	dataframe

	
ipaq_to_minutes(hours, mins)

	Convert hours and minutes into minutes, following IPAQ data cleaning rules.

Internal function used by survey.ipaq_long_aggregate(). Takes a
hours and a minutes column (Pandas series) and calculates total time in
minutes. Follows IPAQ data cleaning rules as outlined in the scoring
guide, such as handling out-of-bound hour values (no conversion), and
removing individuals that reported too large of a time value (> 24 hours).

	Parameters

	
	hours (series) – Pandas series containing reported hours for all participants.

	mins (series) – Pandas series containing reported minutes for all participants.

	Returns

	converted – Pandas series containing time spent in minutes.

	Return type

	series

	
pas_aggregate(q_map)

	Aggregate PAS questionnaire data

The original development paper: Aadahl_Jørgensen (2003) - Validation of a New Self-Report
Instrument for Measuring Physical Activity

	Parameters

	q_map (dict) – Dictionary mapping question names to separate Pandas columns/series.
This is used so internally the function uses a consistent name for
each column of the survey (which may be named differently).

The dictionary keys follow a strict naming scheme of ‘a’, ‘b’ … ‘i’,
where each key represents a PAS category. Time variables need to be split,
and hours and minutes must be stored under separate keys.
The naming scheme for the time variables are x_hours and x_mins.
The dictionary must also contain a column of subject numbers under the key sub_num.

An example dictionary might look like this:

>>> pas_qmap = {'sub_num': df['subNum'],
 'a_hours': df['PAS_a_hours'],
 'a_mins': df['PAS_a_mins'],
 'b_hours': df['PAS_b_hours'],
 'b_mins': df['PAS_b_mins'] ... }

	Returns

	aggregated – Pandas dataframe containing the calculated PAS summary data.

	Return type

	dataframe

pyutils_sh.utils module

Utility functions for general purpose Python programming.

	
get_path(f='/home/docs/checkouts/readthedocs.org/user_builds/pyutils-sh/envs/develop/bin/sphinx-build')

	Get path to, and name of, a file.

	Parameters

	f (str, optional) – Full path to a file. Defaults to the currently executing Python file.

	Returns

	
	directory (str) – Path to the directory containing the file.

	filename (str) – Name of the file.

setup module

 nav.xhtml

 Table of Contents

 		
 Welcome to pyutils_sh’s documentation!

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

